Challenges Facing Grid Integration of FC/ Hydrogen Technologies

"NREL Energy Systems Integration Facility (ESIF) Workshop"

Jack Brouwer
Associate Director

August 30, 2012

© Advanced Power and Energy Program, 2012

1/33

Outline

- Some thoughts on Grid Integration Challenges
- EXAMPLE: Irvine Smart Grid Demonstration (ISGD)
- Fuel Cell and Hydrogen Production Dynamics & Control

Policy challenges:

- Integration requirements different in each state
- **Tariff / Rate Structure Challenges**
 - . Departing Load charges
 - Demand charges
 - No Net-Metering
 - Co-Metering (Wholesale vs. Retail price)
 - No structures for additional benefit payments
 - Power quality
 - Power factor correction
 - Demand response
 - Virtual utility response
- **Utility Design / Review costs**
- **Metering & Interconnect Switchgear costs**
- Islanding rules

3/33

© Advanced Power and Energy Program, 2012

Grid Integration Challenges

Wind Power - Example of Non-Coincidence with Peak

Energy Deployment Model: 33% Wind Penetration

Need huge dispatchable resource increase (FC?), existing generators must become more flexible & complemented by energy storage (H₂?), demand response, ...

July, 2006 data Time 5/33

© Advanced Power and Energy Program, 2012

Grid Integration Challenges

Solar Power ~coincident with peak - but clouds cause problem

SunPower, Inc., 2008 6/33

Solar Power ~coincident with peak – but clouds cause problem

© Advanced Power and Energy Program, 2012

Grid Integration Challenges

Circuit Operation/Control Challenges: Voltage Regulation

• NolDistrib DGG Pagete eation is DG Coasse odated with current infrastructure:

Use load-tap changing (LTC) transformer to control substation voltage

What happens when we add PV to this distribution circuit?

Penetration Factor = DG capacity / Circuit baseline

Two-way power flow, high penetration of loads (e.g., EVs) or generation (e.g., FC systems) pose capacity challenges

7/33

Inverter Interconnection & Harmonics: Baseline case:

- Examine inverter-load relationship
- DG following measured building load (non-linear)
- Inverter-only
- Assume Pgrid = 10kW

\$\sum_{\text{9}}^{\text{9}} \bigcup_{\text{500}}^{\text{500}} \bigcup_{\te

Inverter-only design is insufficient to compensate harmonics

9/33

© Advanced Power and Energy Program, 2012

Grid Integration Challenges

Inverter Interconnection & Harmonics: APF case:

- Infinite load-following
- Add active power filter (APF)
- APF provides compensation current

Addition of APF reduces undesirable line current harmonics

10/33

© Advanced Power and Energy Program, 2012

© Advanced Power and Energy Program, 2012

11/33

Grid Integration Challenges

Outline

- Some thoughts on Grid Integration Challenges
- EXAMPLE: Irvine Smart Grid Demonstration (ISGD)
- Fuel Cell and Hydrogen Production Dynamics & Control

© Advanced Power and Energy Program, 2012

13/33

Irvine Smart Grid Demonstration (ISGD)

Project Team led by Southern California Edison (SCE):

- UC Irvine energy conversion device testing, optimization and benefits analysis, faculty housing coordination
- GE advanced appliances, EMS, smart inverters
- A123 Systems battery storage
- SunPower Corp. solar photovoltaic systems
- Itron Inc. SmartConnect™ metering infrastructure
- EPRI analysis, simulation, data acquisition
- USC DARPnet security and interoperability protocols
- Cal Poly Pomona curriculum development

Irvine Smart Grid Demonstration (ISGD)

Irvine Smart Grid Demonstration (ISGD)

Evolution of Home Energy Efficiency Technologies in ISGD

Test Case	Energy Efficiency Level*	Home Area Network [†]	PV	EVSE	PEV (non- commun- icating)	Home Storage	PEV (commun- icating)	# of Homes
Control	-	-	-	-	-	-	-	~10
2012	35%	Yes	Yes	-	-	-	-	~10
2015	55%	Yes	Yes	Yes	Yes	Yes	-	~10
2020- ZNE	65%	Yes	Yes	Yes	Yes	Yes	Yes	~10

^{*} above 2005 Title 24 level

EVSE - electric vehicle supply equipment

PEV – plug-in electric vehicle

PV - photo-voltaic

[†] includes in-home displays, programmable, controllable thermostats, energy management systems, smart appliances, Edison SmartConnect™ meters

ISGD Communication & Control Technologies

Advanced Sensing and Measurement

- **Smart meters Advanced Metering Infrastructure (AMI)**
- Cost-effective sensing and energy measurement for home automation and smart appliances
- Distribution network sensing
 - Monitor voltage, frequency, angle, component temperature, weather conditions such as irradiance, wind velocity, and ambient temperature
- Transmission system sensing phasors/synchrophasors

© Advanced Power and Energy Program, 2012

Outline

- Some thoughts on Grid Integration Challenges
- **EXAMPLE: Irvine Smart Grid Demonstration (ISGD)**
- Fuel Cell and Hydrogen Production Dynamics & Control

Sample Dynamic Simulation Module Geometries

- Planar SOFC with 10 Discrete Computational Nodes
 - Anode Gas, Cathode Gas, Cell EEA, Separator Plates

- Reformer Module with 5 Discrete Computational Nodes
 - Anode Off-Gas Recycle, Fuel Mix, Combustor HX, Catalyst Bed

© Advanced Power and Energy Program, 2012

19/33

Dynamic Simulation: 220kW SOFC/GT System

Building Energy and Controls

Measure Dynamic Loads and CCHP Performance

Measured commercial building dynamic loads

low computer use office space

call and service center

Building Energy and Controls

Measure Dynamic Loads and CCHP Performance

Measured commercial building dynamic loads

computer intensive office

data center

© Advanced Power and Energy Program, 2012

23/33

Building Energy and Controls

Measure Dynamic Loads and CCHP Performance

Commercial Office Building "High Resolution" Data

24/33

Building Energy and Controls

Simulate Existing CCHP Performance

 Example of integrated CCHP system and Simulink® embodiment (Meacham et al., 2006)

© Advanced Power and Energy Program, 2012

25/33

Building Energy and Controls

Develop Novel Control Algorithms

Previous algorithm example (Meacham et al., 2006)

$$Cost = (P_{bldg} - P_{DG})C_{e} + (\frac{P_{DG}}{\eta_{DG}(P_{DG}, T_{amb})})C_{NG} + K_{ws}(Th_{bldg} - Th_{DG}(P_{DG}, T_{amb})EFF_{DG})(\frac{C_{e}}{EFF_{comp}})$$

Dispatchable Renewable Power from Fuel Cells

Steady-State Success (only)

Inland Empire Utilities, CA

Palmdale, CA - Waste-water

Tulare, CA - Waste-water treatment

Pleasanton, CA Waste-water

King County, WA Waste-water plant

Sun City, CA – Waste-water treatment

© Advanced Power and Energy Program, 2012

Enable Local Hydrogen Fuel Provision

Energy Station Concept - local (& dynamic?) H₂ production

Energy Storage Technology Required

Rating Comparison

Electricity Storage Association, 2009 29/33

© Advanced Power and Energy Program, 2012

Renewable Fuel Cell Systems Research

4.2 kW RFC Supply & Demand Power Flow:

Hydrogen Energy Storage

Solar Hydrogen Backup Power System • Los Alamitos, CA

- PV: 10kW- 60 Sharp 175 W, 15,682 kWh Annual Basis
- Proton Energy Hogen S40RE electrolyzer
- 4 5kW GenCore Fuel Cells
- 2- APC Symmetra LX-8 -16 KVA batteries

32/33

© Advanced Power and Energy Program, 2012

Hydrogen Energy Storage

Pipeline transmission may be preferred to wires

Co-benefit of long-range zero emissions transportation fuel

© Advanced Power and Energy Program, 2012

33/33

THANKS for Your Attention!

Questions?

